Microprocessor SPARClite

omos **Peripheral LSI for SPARClite** MB86941/942

DESCRIPTION

MB86941 and MB86942 are dedicated peripheral LSIs for SPARClite*. The MB86941 and MB86942 are designed to enable compact configuration of high-performance systems with SPARClite architecture, and provide the following features.

*: SPARC is a registered trademark of SPARC International base on technology developed by Sun Microsystems, Inc. SPARClite is a trademark of SPARC International, Inc. licensed exclusively to Fujitsu Microelectronics, Inc.

■ FEATURES

Direct connection to SPARClite

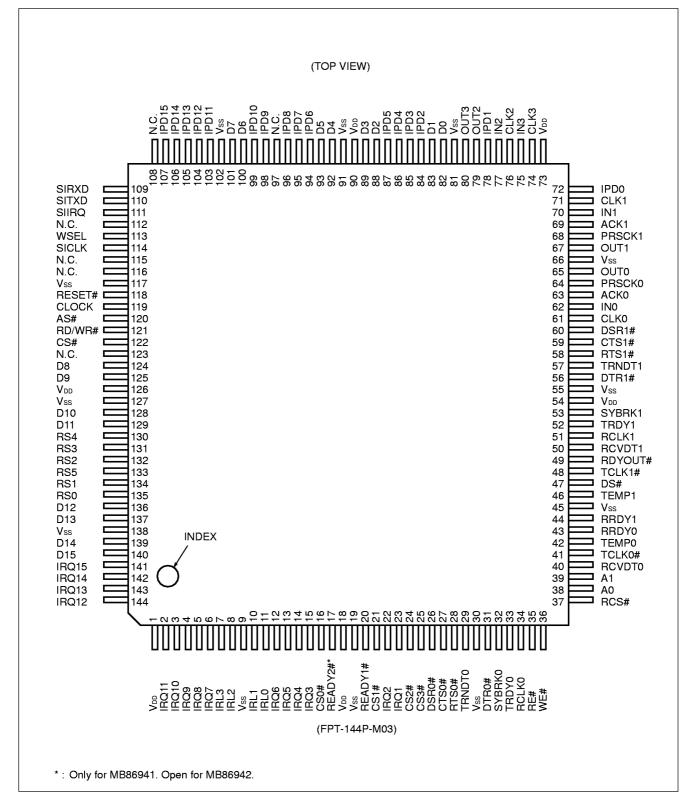
Register read/write in 2 clock cycles up to 30MHz. Register read/write in 3 clock cycles at 40MHz (MB86941) or 50MHz (MB86942).

Built-In On-Chip Modules:

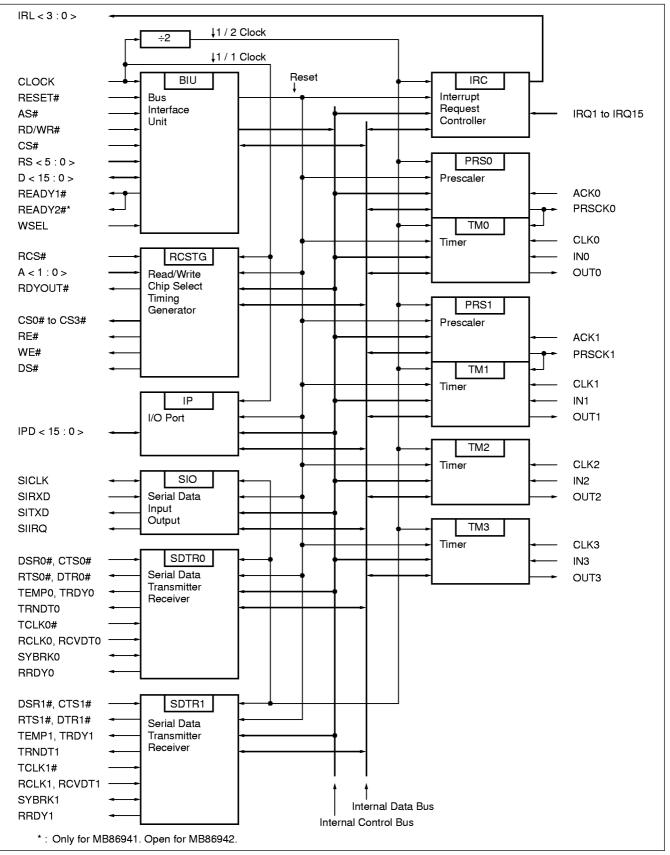
 Interrupt controller Interrupt input: 15 channels Each interrupt input has independent masking and trigger mode settings

 16-bit timer: 4 channels Two of the four channels have prescalers Each channel has five independent mode operations MODE0 : Periodical-interrupt MODE1 : Timeout-interrupt MODE2 : Square wave generator

(Continued) (Conti PACKAGE 144-pin Plastic QFP (FPT-144P-M03)


(Continued)

MODE3: Programmable one shot (software trigger) MODE4: Programmable one shot (external trigger)


- SDTR (Serial data transmitter receiver): 2 channels MB89251A type
- Timing control, CS expansion Generates read, write and data strobe signals according to the requirements of external devices.
- SIO (Synchronous serial input/output) Simple synchronous type serial input/output
- I/O port, 16-bit Individual direction control by bit

5V single power supply (MB86941), 3.3V single power supply (MB86942) Upward pin compatibility with MB86940C

PIN ASSIGNMENT

BLOCK DIAGRAM

4

■ DESCRIPTION OF BLOCK FUNCTIONS

1. BIU (Bus Interface Unit)

This block receives MPU (SPARClite) bus signals and bus controls signals (CLOCK, AS#, RD/WR#, CS#, ADR6 to ADR2, D<15:0>) and generates control signals for accessing MB86941/MB86942 internal resources. It also returns that Ready signal to the MPU which corresponds to the access time of each of such resources.

2. IRC (Interrupt Request Controller)

This block provides 15-channel interrupt input signals to transmit the interrupt level IRL <3:0> for each interrupt to the SPARClite.

3. TM (Timer) and PRS (Prescaler)

TM0 to TM3 are 16-bit timers serving as periodic interrupt generation timers, a watchdog timer, and an external event counter. The operating clock can be selected from among the internal clock, the clock frequency-divided by the prescaler, and the external clock.

Prescalers 0 and 1 are linked with timer channels 0 and 1, respectively. Each of the prescalers is initialized upon loading (or reloading) of the timer initial value of the corresponding timer.

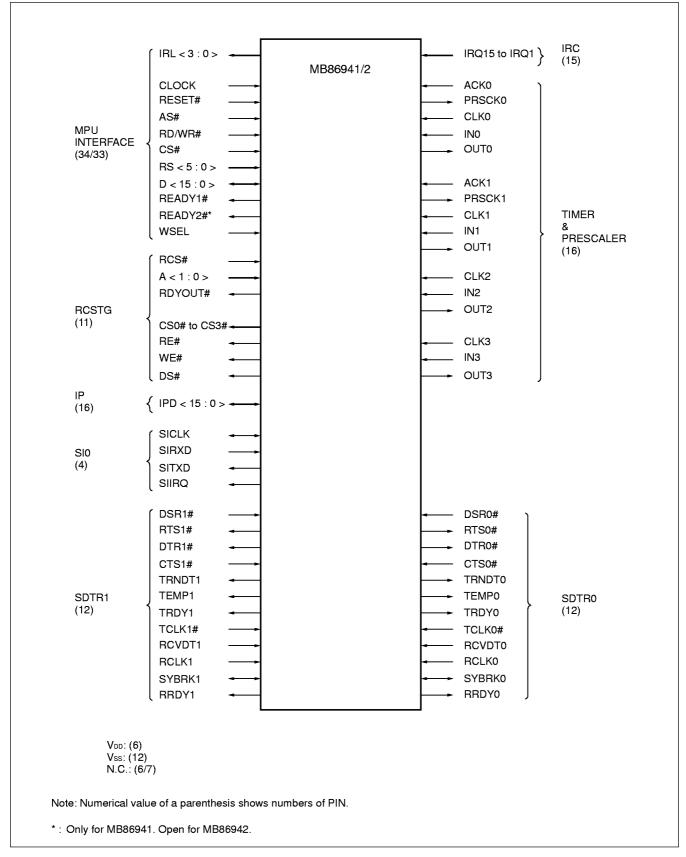
4. SDTR (Serial Data Transmitter Receiver)

SDTR0 and SDTR1 are serial data transmitter/receiver modules programmable for control of transmission and reception.

The programming model is the same as that for the MB89251A.

5. RCSTG (Read/Write Timing Generator)

This module generates read, write, and data strobe signals conforming to the required timings for external connection of other devices. The assert timing and pulse width of each signal to be generated is programmable.


6. IP (I/O Port)

There are 16 I/O ports. The input/output direction of each port can be set by the control register.

7. SIO (Serial Data Input Output)

This block is a clock-synchronous serial interface. The transfer clock signal can be set to the internally generated or externally input one. The SIO outputs data to be transmitted and inputs received data in synchronization with the transfer clock signal.

■ PIN DESCRIPTION

1. MPU INTERFACE SIGNALS (34/33)

Pin symbol	I/O	Pin no.	Pin name	Description				
RESET#	I	118	Reset	Reset input pin Input an "L" signal to this pin to reset the chip.				
CLOCK	I	119	Clock	System clock input pin The chip contains some modules that use the clock signal from this pin (not divided), and other modules that use the clock signal divided in half. Clock not divided: BIU, RCSTG, IP Clock divided: IRC, PRS0, PRS1, TM0 to TM3, SDTR0, SDTR1, SIO				
AS#	I	120	Address Strobe	Address strobe input pin Input an "L" signal to this pin to determine register access according to the signals input to the RS<5:0>, CS#, and RD/WR# pins.				
RD/WR#	Ι	121	Read/Write	Read/write input pin Input an "H" signal to designate a read cycle, or an signal to designate a write cycle.				
CS#	I	122	Chip Select	Chip select input pin				
RS0	Ι	135	Register Select 0					
RS1	Ι	134	Register Select 1	Register select input pin				
RS2	I	132	Register Select 2	The combination of input signals to the RS<5:0> and CS# pins determines which register is accessed.				
RS3	Ι	131	Register Select 3	The RS5 pin has internal pull-down resistance				
RS4	Ι	130	Register Select 4	(MB86941 only).				
RS5	I	133	Register Select 5					
READY1#	0	20	Ready 1	Data ready output pin MB86941: Open drain output with 12mA "L" drive capability. Drives an "H" level signal for 3ns before going to High-Z state.				
READY2#	0	17	Ready 2	MB86942: Normal output. READY2# signal deleted. If the READY generator circuit in the MPU is used, it is not necessary to connect this pin to the MPU.				
WSEL	I	113	Wait Select	Wait select input pin Input to this pin determines the interface timing with the MPU. Fix "L" to set register read/write access to 3 cycles, or fix "H" to set register read/write access to 2 cycles. This pin has internal pull-up resistance (MB86941 only).				

Pin symbol	I/O	Pin no.	Pin name	Description		
D0	I/O	82	Data Bus 0			
D1	I/O	83	Data Bus 1			
D2	I/O	88	Data Bus 2			
D3	I/O	89	Data Bus 3			
D4	I/O	92	Data Bus 4			
D5	I/O	93	Data Bus 5			
D6	I/O	100	Data Bus 6			
D7	I/O	101	Data Bus 7	Data I/O port		
D8	I/O	124	Data Bus 8	These pins are used to transfer register read/write data.		
D9	I/O	125	Data Bus 9			
D10	I/O	128	Data Bus 10			
D11	I/O	129	Data Bus 11			
D12	I/O	136	Data Bus 12			
D13	I/O	137	Data Bus 13			
D14	I/O	139	Data Bus 14			
D15	I/O	140	Data Bus 15			
IRL0	0	11	Interrupt Request Level 0			
IRL1	0	10	Interrupt Request Level 1	Interrupt request output pin		
IRL2	0	8	Interrupt Request Level 2	These pins are used to generate interrupts to the MPU and notify the interrupt level.		
IRL3	0	7	Interrupt Request Level 3			

2. INTERRUPT REQUESTS (15)

Pin symbol	I/O	Pin no.	Pin name	Description				
IRQ1	Ι	23	Interrupt Request 1					
IRQ2	I	22	Interrupt Request 2					
IRQ3	I	15	Interrupt Request 3	Interrupt request pin Interrupt receiving priority: IRQ15 is highest priority				
IRQ4	I	14	Interrupt Request 4	and IRQ1 is lowest.				
IRQ5	I	13	Interrupt Request 5	A choice of four interrupt waveforms is available by mode setting for each of the 15 pins independently,				
IRQ6	I	12	Interrupt Request 6	including "H" level, "L" level, rising edge, and falling				
IRQ7	I	6	Interrupt Request 7	edge. Each input has a filtering function for short pulse				
IRQ8	I	5	Interrupt Request 8	signals, by which an interrupt request is recognized				
IRQ9	I	4	Interrupt Request 9	once a signal is detected at active level at three successive rising edges of the internal clock signal.				
IRQ10	I	3	Interrupt Request 10	Once an interrupt request is detected, it passes				
IRQ11	I	2	Interrupt Request 11	through priority control and masking control and is output at the IRL<3:0> pins as an interrupt request to				
IRQ12	I	144	Interrupt Request 12	the MPU.				
IRQ13	Ι	143	Interrupt Request 13	If these pins are not used, they should be fixed at inactive level.				
IRQ14	Ι	142	Interrupt Request 14					
IRQ15	Ι	141	Interrupt Request 15					

3. TIMER SIGNALS (16)

Pin symbol	I/O	Pin no.	Pin name	Description			
CLK0	Ι	61	CLK0 : Timer Clock 0	Timer control signal pin These pins are used to input an external clock signa			
IN0	Ι	62	to CLK3 : Timer Clock 3	to the timer.			
OUT0	0	65		In external clock mode these signals are synchronized with the internal clock.			
CLK1	Т	71	IN0 : Timer Input 0	Input pin for count operation control signals to the timer			
IN1	Ι	70	to	In MODE0 through MODE3, the input signal is a gate			
OUT1	0	67	IN3 : Timer Input 3	signal. In MODE4, the pins input an external trigger signal.			
CLK2	T	76		Timer output pin			
IN2	I	77	OUT0 : Timer Output 0 to OUT3 : Timer Output 3	 The output waveform is determined by the mode setting: Periodic signal waveform output Square wave output One-shot pulse waveform output 			
OUT2	0	79					
CLK3	T	74					
IN3	I	75					
OUT3	0	80		At reset, an "L" level signal is output.			
ACK0	I	63	Asynchronous Clock 0	Prescaler asynchronous clock pin Input can be asynchronous with respect to the system clock signal input at the CLOCK pin. If an external clock signal is selected by the PRS0 and			
ACK1	I	69	Asynchronous Clock 1	PRS1 registers, this signal can be used as a source clock for the prescaler. The clock signal divided by the prescaler is output at the PRSCK0, PRSCK1 pins. If these pins are not used, they should be fixed at "L" level.			
PRSCK0	0	64	Prescaler Clock Output 0	Prescaler clock output pin			
PRSCK1	0	68	Prescaler Clock Output 1	An "L" level signal is output at reset.			

4. SDTR SIGNALS (24)

Pin symbol	I/O	Pin no.	Pin name	Description
DSR0#	Ι	26	Data Set Ready 0	Modem control signal DSR input pin
DSR1#	Ι	60	Data Set Ready 1	The status of these pins is indicated at the status register bit 7.
RTS0#	0	28	Request To Send 0	Modem control signal RTS output pin Set the command register bit 5 to "1" to output an "L"
RTS1#	0	58	Request To Send 1	signal, or to "0" to output an "H" signal.
DTR0#	0	31	Data Terminal Ready 0	These pins can be used as a DATA TERMINAL READY signal or a RATE SELECT signal of
DTR1#	0	56	Data Terminal Ready 1	modem.Set the command register bit 1 to "1" to output an "L" signal, or to "0" to output an "H" signal.
CTS0#	I	27	Clear To Send 0	Modem CLEAR TO SEND pin To enable sending, the command register bit 0 must
CTS1#	I	59	Clear To Send 1	be set to "1" and also an "L" level signal must be input at these pins.
TRNDT0	0	29	Transmit Data 0	Transmit Data pin Parallel data written to the data register is converted to serial data and output from these pins. In asynchronous mode, a start bit and stop bit are attached, and a parity bit may be attached if necessary. If there is no data to be sent in the SDTR module, in synchronous mode a synchronizing character is output and in asynchronous mode the pins go to mark mode. If a send-prohibited setting (command register bit 0 set
TRNDT1	0	57	Transmit Data 1	to "0") is in effect, or if an "H" signal is input at the CTS# pin, these pins to mark mode. However if a send-prohibited setting is entered while a sending operation is in progress, all sending data already written will be sent before these pins go to mark mode. In addition, in bisynchronous mode if the first synchronization character is being sent (synchronization standby), then these pins will go to mark mode after sending the second synchronization character.
TEMP0	ο	42	Transmit Empty 0	These pins indicate whether sending data is present. If there is no data to be sent in the SDTR module, the
TEMP1	0	46	Transmit Empty 1	signal level is "H." As soon as one byte of sending data is written, these pins go to "L" level at the fall of the write signal.
TRDY0	0	33	Transmit Ready 0	Transmit Ready output pin When the CTS# signal is "L" and the command
TRDY1	ο	52	Transmit Ready 1	register is set to enable sending, these pins send an "H" level signal whenever the sending data buffer is empty.

Pin symbol	I/O	Pin no.	Pin name	Description
TCLK0#	I	41	Transmit Clock 0	Transmit Clock input pin In synchronous mode, the sending bit rate is fixed at the sending clock $\times 1$, so that the clock signal input at these pins becomes the sending bit rate. In asynchronous mode, the sending bit rate will be the sending clock signal $\times 1$, or $\times 1/16$, or $\times 1/64$ depending on the bit rate acting in the mode
TCLK1#	I	48	Transmit Clock 1	on the bit rate setting in the mode register. For example, if a 19.2 kHz clock signal is input at the TCLK# pin, the sending bit rate will be 19200 pbs with an \times 1 setting, or 1200 pbs with an \times 1/16 setting, or 300 pbs with an \times 1/64 setting. Sending data is output in synchronization with the falling edge of the sending clock signal.
RCVDT0	Ι	40	Receive Data 0	Receive Data input pin Serial data input to these pins is converted to parallel
RCVDT1	I	50	Receive Data 1	data in the SDTR module and then can be read by the data bus.
RCLK0	I	34	Receive Clock 0	Receive Clock input pin In synchronous mode, the receiving bit rate is fixed at the receiving clock $\times 1$, so that the clock signal input at these pins becomes the receiving bit rate. In asynchronous mode, the receiving bit rate will be the sending clock signal $\times 1$, or $\times 1/16$, or $\times 1/64$ depending on the bit rate setting in the mode register. For example, if a 19.2 kHz clock signal is input at the
RCLK1	I	51	Receive Clock 1	RCLK pin, the receiving bit rate will be 19200 pbs with an \times 1 setting, or 1200 pbs with an \times 1/16 setting, or 300pbs with an \times 1/64 setting. Receiving data is sampled in synchronization with the rising edge of the receiving clock signal. Note that in asynchronous mode \times 1 speed differs from \times 1/16 and \times 1/64 speeds in that external synchronization of the RCLK and RCVDT signals is required.

Pin symbol	I/O	Pin no.	Pin name	Description
SYBRK0	I/O	32	Synchronous/Break Detect 0	 These pins can function as synchronization detect input, synchronization detect output, or break detect output pins, depending on the mode setting. External synchronization mode setting: Synchronization signals are input at these pins. When the RCLK is "H" level and these pins receive an "H" signal in hunting operation, the data sampled at the next rise of RCLK is the starting bit of the receiving data. Internal synchronization mode: These pins are used as the synchronization character detect output pins. When incoming data
SYBRK1	I/O	53	Synchronous/Break Detect 1	 matches the synchronization character register setting (both characters must match in bisynchronous mode), an "H" signal is output here. Next, the status register is read and this signal returns to "L" at the end of the read signal. Asynchronous mode: These pins function as break detect output pins. Immediately after a framing error, an "H" signal is output if all receiving data values (one frame including start bit, parity bit, and stop bit) are "0." This "H" signal is cancelled if a "1" data is received before a reset is applied.
RRDY0	0	43	Receive Ready 0	Receive Ready output pin These pins are "H" level, when serial data received at the RCVDT0, RCVDT1 pins is converted to parallel
RRDY1	0	44	Receive Ready 1	data in the SDTR module and is in readable form. Then after the received data is read, these pins becomes "L" level at the end of the read signal.

5. RCSTG SIGNALS (11)

Pin symbol	I/O	Pin no.	Pin name	Description			
CS0#	0	16	Expansion Chip Select 0	Expansion Chin Salaat autout nin			
CS1#	0	21	Expansion Chip Select 1	Expansion Chip Select output pin When the input to the RCS# pin is "L," one of these			
CS2#	0	24	Expansion Chip Select 2	chip select signals will be active depending on the			
CS3#	0	25	Expansion Chip Select 3	combination of input signals to the A0, A1 pins.			
RE#	0	35	Expansion Read Enable	Expansion Read Enable output pin When the input to the RCS# pin is "L" and a bus cycle begins with an "H" input to the RD/WR# pin, this pin produces a pulse of the designated width and the designated timing.			
WE#	0	36	Expansion Write Enable	Expansion Write Enable output pin When the input to the RCS# pin is "L" and a bus cy begins with an "L" input to the RD/WR# pin, this pir produces a pulse of the designated width and the designated timing.			
DS#	0	47	Expansion Data Strobe	Expansion Data Strobe output pin When a bus cycle begins with the RCS# pin input at "L" level, this pin produces a pulse of the designated width and the designated timing.			
RCS#	I	37	Resource Chip Select	Resource Chip Select pin. This pin is used to input the chip select signal supplied to the module RCSTG. When the module RCSTG is used to generate the external resource chip select signals CS0# to CS3#, read strobe RE#, write strobe WE#, and data strobe DS#, the corresponding areas must be decoded. This pin has internal pull-up resistance (MB86941 only).			
A0	I	38	Address 0	These are the input pins for the address signal to the module RCSTG. When the module RCSTG is used to generate the external resource chip select signals CS0# to CS3#, read strobe signal RE#, write strobe signal WE#, and data strobe signal DS#, this address input signal is used to designate the byte position in the			
A1	I	39	Address 1	corresponding area. When the input to the RCS# pins is "L" level, the input signal to these pins determines which of the external resource chip select signals CS0# to CS3# goes active. These pins have internal pull-up resistance (MB86941 only).			
RDYOUT#	0	49	Ready Out	This is the output pin for the ready signal generated by the module RCSTG. When the module RCSTG is used to generate the external resource chip select signals CS0#-CS3#, read strobe signal RE#, write strobe signal WE#, and data strobe signal DS#, the ready signal is output from these pins to the MPU. When any of the signals CS0# to CS1# is at "L" level, this signal is asserted with the designated timing interval.			

6. I/O PORT SIGNALS (16)

Pin symbol	I/O	Pin no.	Pin name	Description
IPD0	I/O	72	I/O Port 0	
IPD1	I/O	78	I/O Port 1	
IPD2	I/O	84	I/O Port 2	
IPD3	I/O	85	I/O Port 3	
IPD4	I/O	86	I/O Port 4	
IPD5	I/O	87	I/O Port 5	
IPD6	I/O	94	I/O Port 6	Signal I/O port
IPD7	I/O	95	I/O Port 7	These pins may be used for input or output, as
IPD8	I/O	96	I/O Port 8	determined by register setting. These pins have internal pull-up resistance (MB86941
IPD9	I/O	98	I/O Port 9	only).
IPD10	I/O	99	I/O Port 10	
IPD11	I/O	103	I/O Port 11	
IPD12	I/O	104	I/O Port 12	
IPD13	I/O	105	I/O Port 13	
IPD14	I/O	106	I/O Port 14	
IPD15	I/O	107	I/O Port 15	

7. SIO SIGNALS (4)

Pin symbol	I/O	Pin no.	Pin name	Description
SICLK	1/0	114	SIO Clock	This is the input/output pin for the clock signal used for SIO serial data transfer. In external clock mode, the clock signal for serial data transfer is input at this pin. In internal clock mode, the clock signal from the internal clock generator is output at this pin. This pin has internal pull-up resistance (MB86941 only).
SIRXD	I	109	SIO Receive Data	SIO Receive Data input pin This pin receives data input LSB first, synchronously with the SICLK pin clock signal. This pin has internal pull-up resistance (MB86941 only).
SITXD	0	110	SIO Transmit Data	SIO Transmit Data output pin This pin outputs data LSB first, synchronously with the SICLK pin clock signal.
SIIRQ	0	111	SIO Interrupt Request	SIO Interrupt Request output pin

8. VDD, Vss, N.C. (24/25)

Pin symbol	I/O	Pin no.	Pin name	Description
VDD	_	1, 18, 54, 73, 90, 126		Power supply input pin
Vss		9, 19, 30, 45, 55, 66, 81, 91, 102, 117, 127, 138		Grand pin
N.C.		97, 108, 112, 115, 116, 123 (17*)		These pins shall be used as an open pin. No. 17 is also an open pin for MB86942.

* : No.17 is a READY2# pin for MB86941.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating						l lasit
Parameter	Symbol	MB86941			MB8	Unit		
Power supply voltage	VDD	_	0.5 to	0 +0.6*1		–0.5 to	+4.0*1	V
Input voltage	V			-0	.5 to V	0.5 ^{*1}		V
Output voltage	Vo	-0.3 to V _{DD} + 0.5 ^{*1}				–0.5 to V	DD + 0.5*1	~
Storage temperature	Tstg				—40 to	o 125		°C
			*3	$V_{O} = V_{DD}$	+40	Vo = VDD	+60	
				Vo = 0	-40			
Output current*2	6	At maximum	*4	$V_{O} = V_{DD}$	+80			mA
		VDD	4	Vo = 0	-40			
			*5	$V_{\text{O}} = V_{\text{DD}}$	+120	Vo = 0	-60	
			5	Vo = 0	-80			

*1: Vss = 0 V

*2: At 1 pin for 1 second

*3: Output pins other than D < 15 : 0 >, READY1# and REDY2#

*4: D < 15:0 >

*5: READY1#, READY2#

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Devemeter	Symphol	Value				
Parameter	Symbol	MB86941	MB86942	Unit		
Power supply voltage	Vdd	4.75 to 5.25	3.15 to 3.45	V		
Operating temperature	Та	0 to	°C			

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRIC CHARACTERISTICS

1. DC Characteristics

(1) Input Characteristics

(MB86942: V _{DD} = 3.3 V ± 0.15 V, T _A = 0 to +7								
Parameter	Symbol	Condition	MB8	6941	MB8	Linit		
	Symbol		Min.	Max.	Min.	Max.	Unit	
	e VIH CLOCK 2.8 IRQ15 to IRQ1 2.4 Other 2.2		2.8	VDD				
"H" level input voltage		IRQ15 to IRQ1	2.4	VDD	$V_{DD} imes 0.65$	VDD + 0.15	v	
		Other	2.2	VDD				
"L" level input voltage		IRQ15 to IRQ1	Vss	0.6	Vss	N	v	
	V⊫	Other	Vss	0.8	V SS	VDD × 0.25	V	

(2) Output Characteristics

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C)

Parameter	Cumhal		MB8	MB86941		MB86942	
	Symbol	Condition	Min.	Max.	Min.	Max.	Unit
		I _{он} = -8 mA* ²	4.0	VDD			
"H" level output voltage	output Von	Iон = -3.2 mA* ³	4.0	V DD			V
Voltage		Iон =4 mA*4	_		VDD-0.5	Vdd	
		lo∟ = +12 mA*1	Vss			_	
"L" level output voltage	Mar	lo∟ = +8 mA*2		0.4	_		v
	Vo∟	lo∟ = +3.2 mA* ³					V
		lo∟ = +4 mA*4			Vss	0.4]

*1: MB86941 READY1#, READY2#

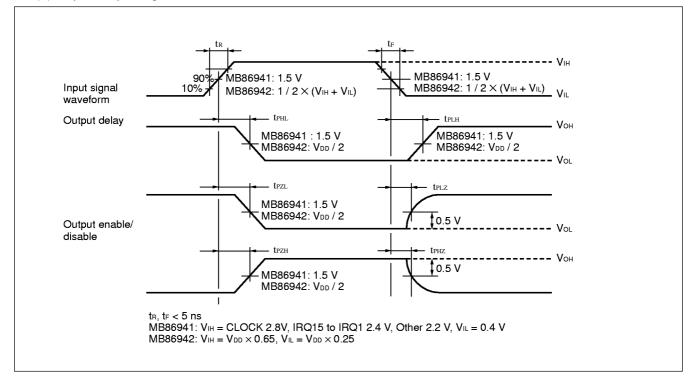
*2: MB86941 D < 15 : 0 >

*3: MB86941 Other than READY1#, READY2# and D < 15 : 0 >

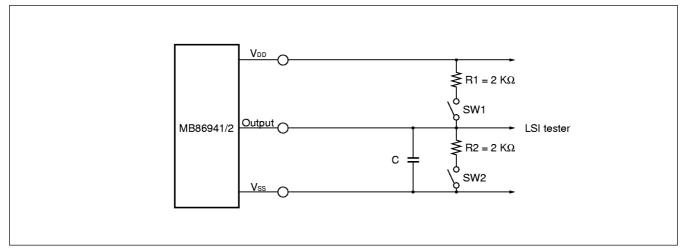
*4: MB86942

(3) Power Supply Current

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V + 0.15 V$, T_A = 0 to +70°C)


Parameter	Symbol	Symbol Condition	MB8	6941	MB8	Unit			
	Symbol Cor	Condition	Min.	Max.	Min.	Max.	Unit		
Power supply current	lcc		_	230	_	190	mA		

2. Capacitances


$(V_{DD} = V_1 = 0 V, f = 1 MHz, T_A = +25^{\circ}C$								
Parameter	Symbol	v	Value					
	Symbol	Min.	Max.	Unit				
Input Capacitance	Сім	—	16	pF				
Output Capacitance	Соит	—	16	pF				
I/O Capacitance	C ı/o		16	pF				

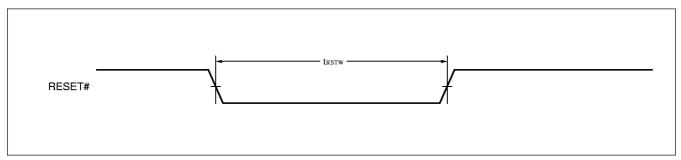
3. AC Test Conditions

(1) Input/Output Signal Waveform

(2) Load Circuit

Condition	Load capacitance				
Condition	MB86941	MB86942			
Normal output	60 pF	30 pF			
Tri-state output (READY1#, READY2#)	65 pF	—			
Bi-directional pin (D bus)	85 pF	30 pF			

Signal transmit	SW1	SW2
$L \rightarrow H, H \rightarrow L$	OFF	OFF
$L \rightarrow Z, Z \rightarrow L$	ON	OFF
$L \rightarrow Z, Z \rightarrow L$	OFF	ON


4. AC Characteristics

(1) Reset signal (Hardware reset)

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

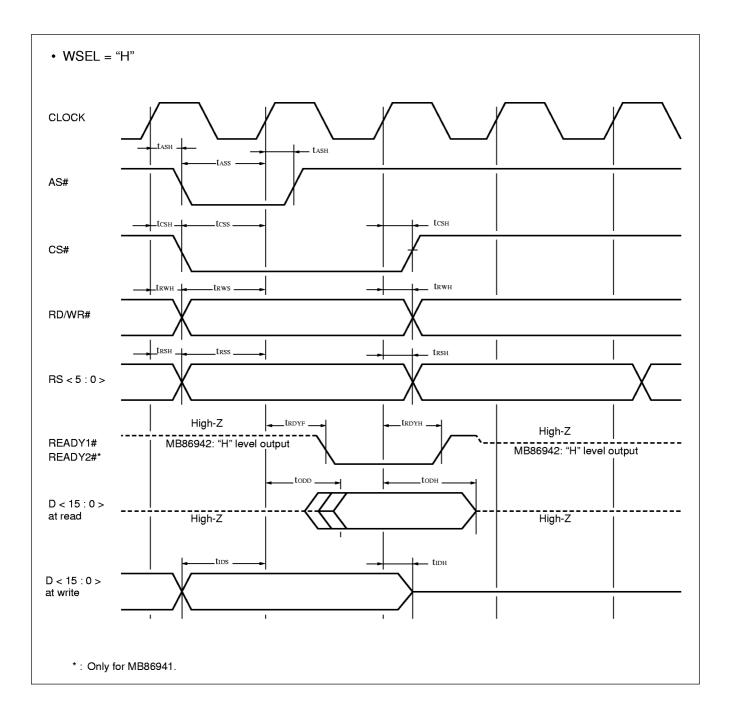
Parameter	Symbol	Va	Unit	
Falailletei	Symbol	Min.	Max.	Onit
Reset pulse width	t rstw	20	—	t clk

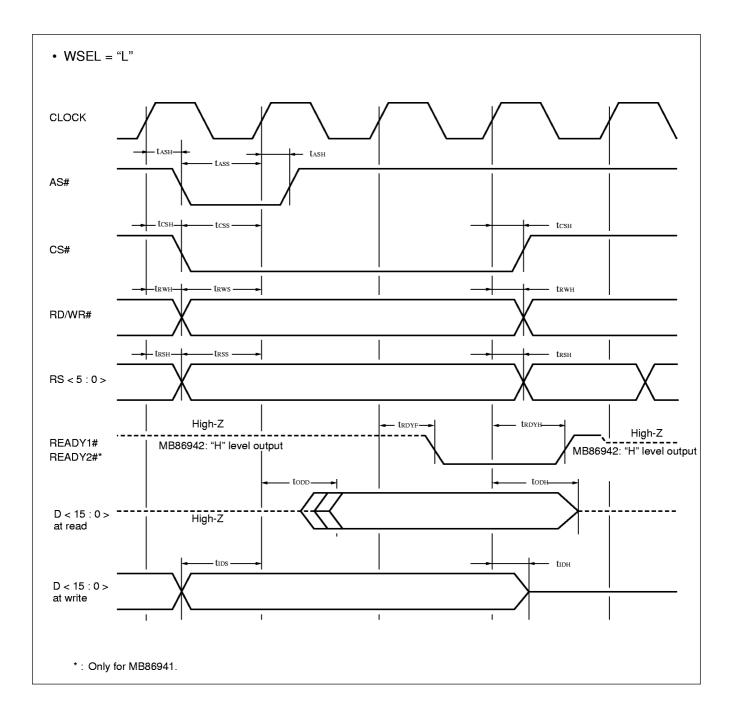

tclk: See "(2) Clock Signals."

(2) Clock signal (CLOCK)

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

Parameter	Symbol	MB8	6941	MB8	6942	Unit				
Falalletei	Symbol	Min.	Max.	Min.	Max.	Unit				
Clock cycle time	t c∟ĸ	25	—	20	—	ns				
Clock "H" pulse width	t clkh	9	_	8	_	ns				
Clock "L" pulse width	t clkl	9	_	8	_	ns				
Clock rise time	t clkr	_	4	—	2	ns				
Clock fall time			4	_	2	ns				



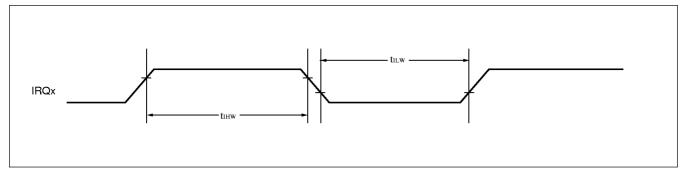

(3) MPU interface (Register read/write)

		<u>را</u>	VID0034	- Z. V DD -	- 0.0 V -	0.15 0	, TA – U	to $+/0^{\circ}C$)
			MB8	6941	MB86942			
Parameter	Symbol	WSEL	= "H"	WSEL	. = "L"	WD00942		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
AS# setup time	tass	11		7	_	7	_	ns
AS# hold time	t ash	0	_	0	_	2		ns
CS# setup time	tcss	8	_	5	_	7	_	ns
CS# hold time	tcsH	0	_	0		2	_	ns
RD/WR# setup time	trws	13		9	_	7	_	ns
RD/WR# hold time	t RWH	0	_	0	_	2	_	ns
RS < 5 : 0 > setup time	trss	8	_	5	_	7	_	ns
RS < 5 : 0 > hold time	t RSH	0		0	_	2	_	ns
READY1#, READY2# output delay time	t RDYF	0	18	0	18	0	18	ns
READY1#, READY2# hold time	t rdyh	5	20	5	20	5	20	ns
D < 15 : 0 > Output delay time at reading	todd	0	21	0	23	0	23	ns
D < 15 : 0 > Output hold time at reading	todh	5	25	5	25	5	20	ns
D < 15 : 0 > Input setup time at writing	tids	11	—	7		7		ns
D < 15 : 0 > Input hold time at writing	t IDH	0		0		0		ns

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

* : READY2# is available for MB86941.

- (4) Interrupt signal
- · Interrupt input pulse width

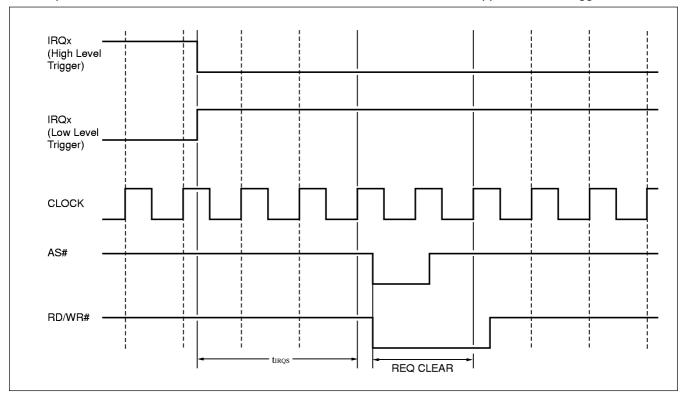

(MB86941: VDD = 5 V \pm 5%, TA = 0 to +70°C)
(MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, $T_A = 0$ to $+70^{\circ}C$)

$(101080342, 000 = 3.3, 0 \pm 0.13, 0, 14 = 0.10, 170, 0)$							
Parameter	Symbol	Va	Unit				
	Symbol	Min.	Max.	Unit			
IRQ input "H" level pulse width*1	tıнw	6 tськ + 10	_	ns			
IRQ input "L" level pulse width*2	tı∟w	6 tolk + 10	_	ns			

tclk: See "(2) Clock Signals."

*1: When the trigger mode is set for "H" level signal input or RISE-EDGE, a pulse of at least this width is received as a REQ-FF signal. Note that this rule does not guarantee that no interrupts less than this width will be received.

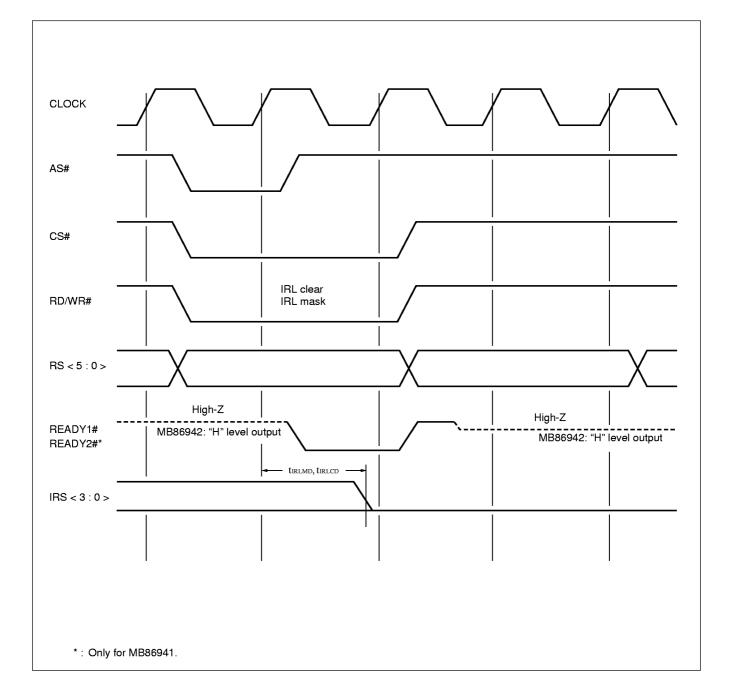
*2: When the trigger mode is set for "L" level signal input or FALL-EDGE, a pulse of at least this width is received as a REQ-FF signal. Note that this rule does not guarantee that no interrupts less than this width will be received.



· Interrupt input clear

	(MB86941: V_{DD} = 5 V ± 5%, T _A = 0 to +70°C (MB86942: V_{DD} = 3.3 V ± 0.15 V, T _A = 0 to +70°C			
Parameter	Symbol	Value		Unit
	Symbol	Min.	Max.	Onit
IRQx clear setup time*	tiras	2 tclk + 10	_	ns

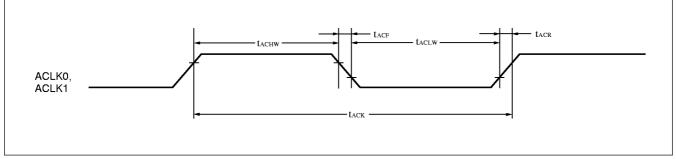
tolk: See "(2) Clock Signals."


* : This parameter means the condition of REQUEST CLEAR execution and is applied at level trigger modes.

Interrupt level output

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

Parameter	Cumphiel	Va	´	
	Symbol	Min.	Max.	Unit
IRL < 3 : 0 > clear delay time		—	80	ns
IRL < 3 : 0 > mask delay time	t irlmd	_	80	ns

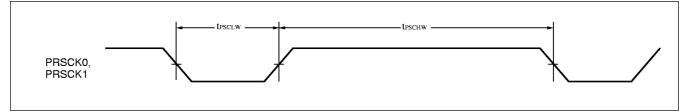


- (5) Prescaler timer
- · Prescaler input

(MB86941: $V_{DD} = 5 V \pm 5\%$,	$T_{A} = 0 \text{ to } +70^{\circ}\text{C}$
(MB86942; $V_{DD} = 3.3 V \pm 0.15 V$.	$T_{A} = 0 \text{ to } +70^{\circ}\text{C}$

$(VID80942, VDD = 3.5 V \pm 0.13 V, IA = 0 t0 + 70 G)$							
Parameter	Symbol	MB8	6941	MB8	Llmit		
	Symbol	Min.	Max.	Min.	Max.	Unit	
Prescaler input clock cycle time*	tаск	50	—	40	—	ns	
Prescaler input clock "H" level width*	t achw	22	_	15	_	ns	
Prescaler input clock "L" level width*	t aclw	22	—	15	—	ns	
Prescaler input clock rise time*	t acr		5	_	5	ns	
Prescaler input clock fall time*	t ACF		5	_	5	ns	

* : Applied in prescaler external clock mode. When the prescaler output is used as a timer signal, the timer input clock requirements must be met.

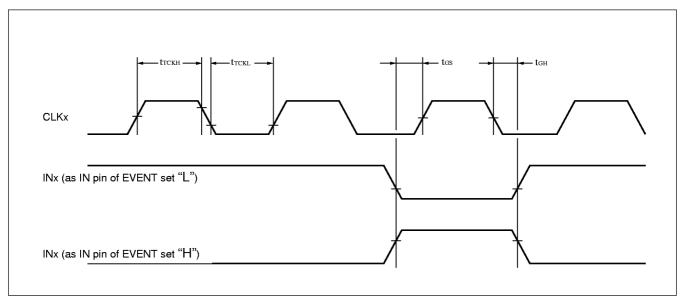

• Prescaler output

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

$(VIB80942. VDD = 3.3 V \pm 0.13 V, TA = 0.10$					
Parameter	Symbol	Standard Value	Unit		
Prescaler output "L" level width*1, *3	t PSCLW	1	t pck ^{*4}		
Prescaler output "H" level width*1, *3	t PSCHW	N – 1	tpck*4		
Prescaler output "L" level width*2, *3	t PSCLW	N · 2 ^{M − 1}	t PCK ^{*4}		
Prescaler output "H" level width*2, *3	t PSCHW	N · 2 ^{M−1}	t PCK ^{*4}		

*1: Applied when the prescaler register SELECT field is set to "0." N: Value set in the prescaler register PRESCALE VALUE field

- *2: Applied when the prescaler register SELECT field is set to any value other than "0." M: Value set in the prescaler register SELECT field.
 - N: Value set in the prescaler register PRESCALE VALUE field.
- *3: When the prescaler register SELECT field is set to "0," the PRSCKx output is fixed at "L" level.
- *4: tPCK has the following prescaler input clock period. Internal clock mode: tPCK = 2 · tCLK (For tCLK, see "(2) Clock Signals") External clock mode: tPCK = tACK (For tACK, see "(5) Prescaler Timer Unit/Prescaler Input")

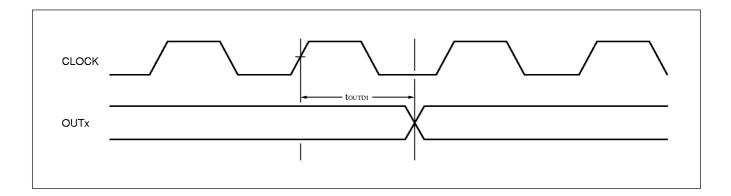


• Timer (at external clock mode)

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

_		Va		
Parameter	Symbol	Min.	Max.	Unit
Timer input clock "H" level width	t тскн	3		t c∟ĸ
Timer input clock "L" level width	tтск∟	3		tclk
GATE signal (IN pin) setup time (for CLKx)	tas	10		ns
GATE signal (IN pin) hold time (for CLKx)	t _{GH}	0		ns

tclk: See "(2) Clock Signals".



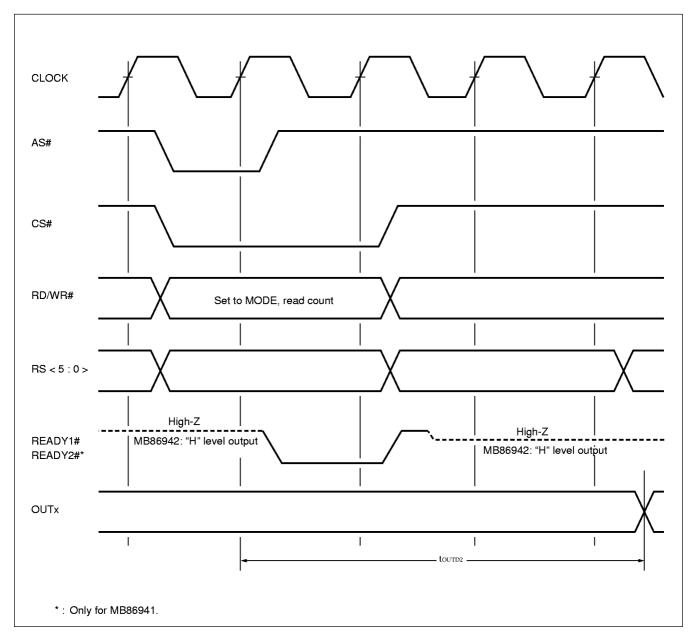
• Timer output 1

(MB86941: $V_{DD} = 5 V \pm 5\%$, $T_A = 0$ to $+70^{\circ}$ C)

(MB86942: VDD = $3.3 \text{ V} \pm 0.15 \text{ V}$, TA = 0 to +70°C)
--	---

Parameter	Symbol	Value		Unit
	Symbol	Min.	Max.	Unit
OUT output delay time (for CLOCK)	toutd1	—	30	ns

• Timer output 2

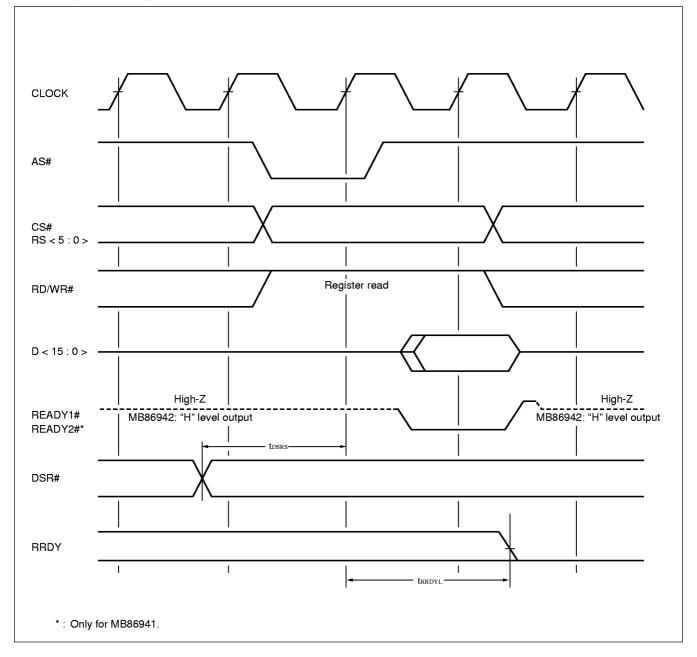

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

$(MB00942. VDD = 3.3 V \pm 0.15 V, TA = 0.10 + 70 C)$					
Parameter	Symbol	Value		llait	
	Symbol	Min.	Max.	Unit	
OUT output delay time*	toutd2	_	3 tськ + 30	ns	

tolk: See "(2) Clock Signals".

* : Applied to the following cases.

- Setting mode (write to TCR).
- After setting to MODE0, write to RELOAD register/read COUNT register.
- After setting to MODE1, write to RELOAD register/read COUNT register.
- After setting to MODE3, write to RELOAD register.

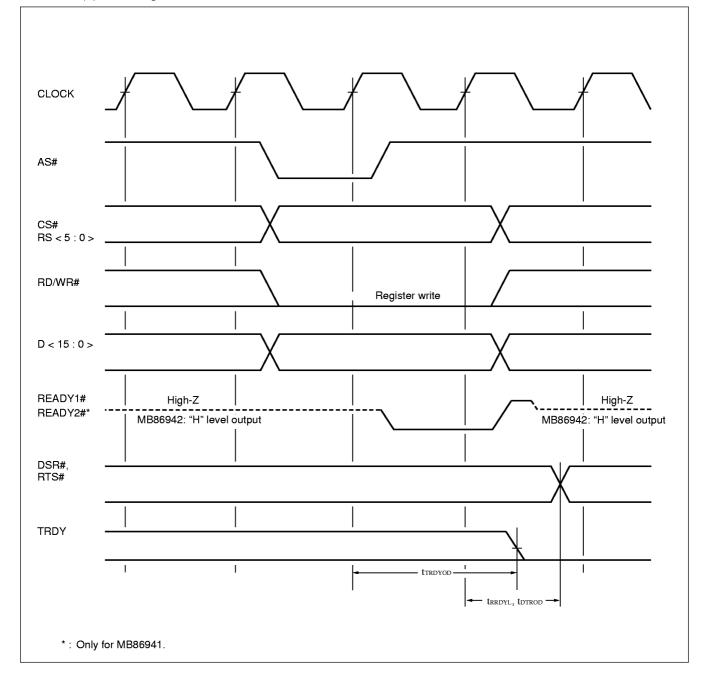


- (6) SDTR
- DSR#, RRDY

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

Deremeter	Symbol	Va	11	
Parameter	Symbol	Min.	Max.	Unit
DSR# setup time for resistor read	t dsrs	28	_	t clk
Interval from register read to RRDY off		0	100	ns

tclk: See "(2) Clock Signals".

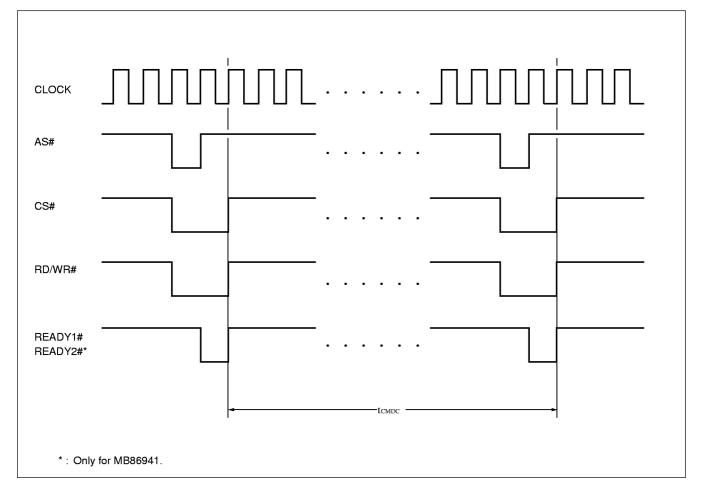


• DTR#, RTS#, TRDY

(MB86941: $V_{DD} = 5 V \pm 5\%$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$)	
(MB86942: $V_{DD} = 3.3 V \pm 0.15 V$. T _A = 0 to +70°C)	

Devementer	Symbol –	Va	llait	
Parameter		Min.	Max.	Unit
Delay time from register write to DTR# output	t dtrod	0	40	t clk
Delay time from register write to RTS# output	t rtsod	0	40	t clk
Delay time from register write to TRDY output	t trdyod	0	100	ns

tolk: See "(2) Clock Signals".

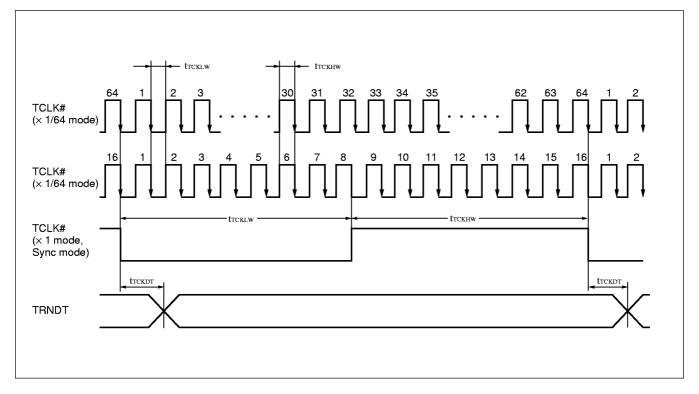


Command write cycle

(MB86941: $V_{DD} = 5 V \pm 5\%$, $T_A = 0$ to $+70^{\circ}C$)
(MB86942: V _{DD} = $3.3 \text{ V} \pm 0.15 \text{ V}$, T _A = 0 to +70°C)

Deveneter	Overshell	Value		Unit	
Parameter	Symbol Min. Ma		Max.		
Command write cycle time (for initial value setup)	t CMDC	14	_	t clk	
Command write cycle time (for asynchronous mode)	tcmdc	20	_	t clk	
Command write cycle time (for synchronous mode)	tсмрс	40	_	t clk	

tclk: See "(2) Clock Signals".

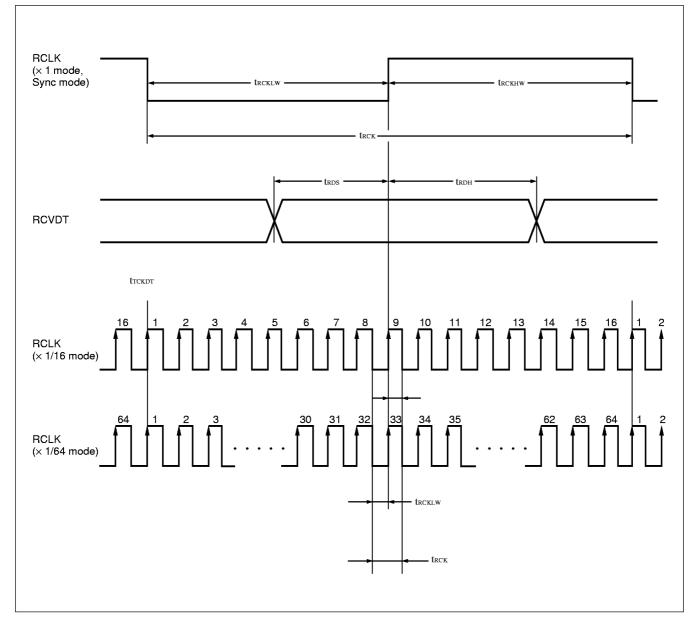


(MB86941: $V_{DD} = 5 V \pm 5\%$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$)

Transmit Clock and Transmit Data

(MB86942: V_{DD} = 3.3 V ± 0.15 V, T _A = 0 to +70°C)							
Deveneter	0 milion	Syncroh mo	de, × 1 mode	×1/16, ×1/64 mode			
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit	
Transmit Clock "H" width	t тскн w	32	—	4	_	t clk	
Transmit Clock "L" width	t toklw	14		4	—	t clk	
Interval from transmit clock falling to transmit data output	t tckdt	0	100	0	100	ns	

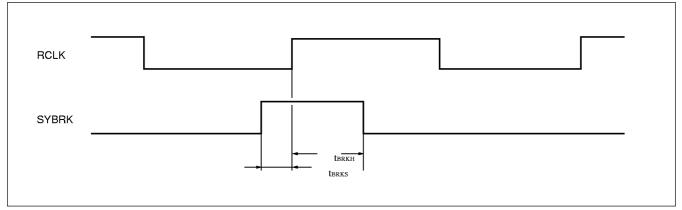
tclk: See "(2) Clock Signals".



Receive Clock and Receive Data

(MB86941: V_{DD} = 5 V \pm 5%, T_A = 0 to +70°C) (MB86942: V_{DD} = 3.3 V \pm 0.15 V, T_A = 0 to +70°C)

Devenenter	eter Cymhel	Syncroh mode, × 1 mode ×1/16, ×1/64 mo		Syncroh mode, ×	/64 mode	Llait
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
Receive clock period	trcк	62	—	8	—	t clk
Receive clock "H" width	trcкнw	12		4	_	t clk
Receive clock "L" width	t rckl w	7	—	4	_	t CLK
Receive data setup time	tRDS	6		6	_	t CLK
Receive data hold time	t RDH	6		6	_	t clk

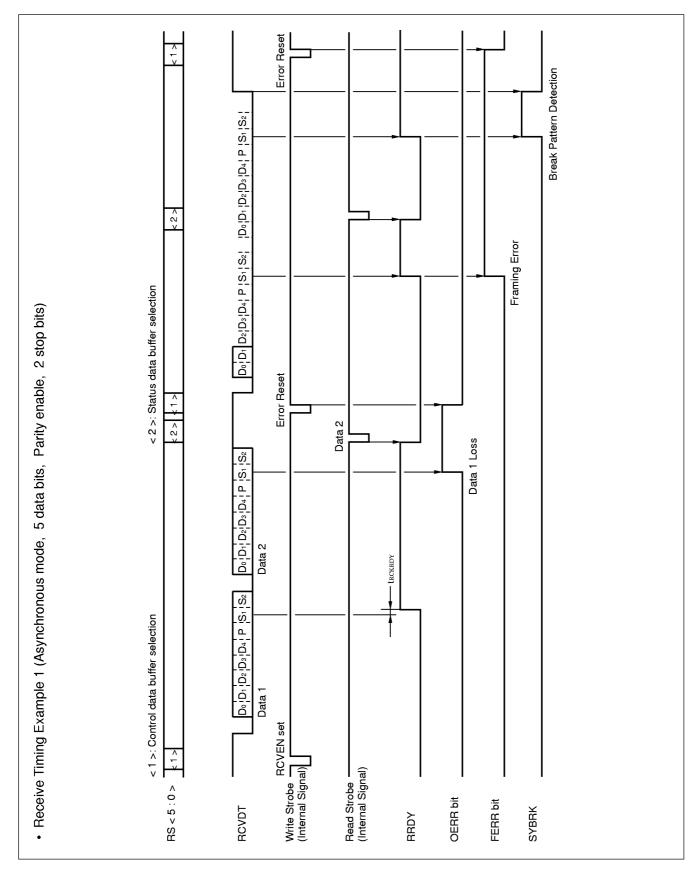


• SYBRK Signal Timing for External Synchronous mode

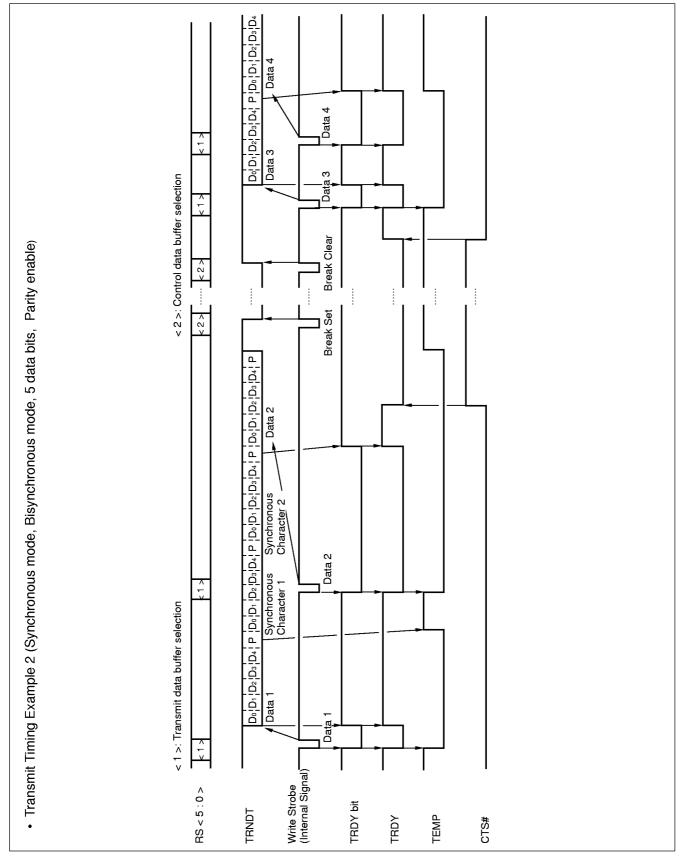
(MB86941: V_{DD} = 5 V \pm 5%, T_A = 0 to +70°C) (MB86942: V_{DD} = 3.3 V \pm 0.15 V, T_A = 0 to +70°C)

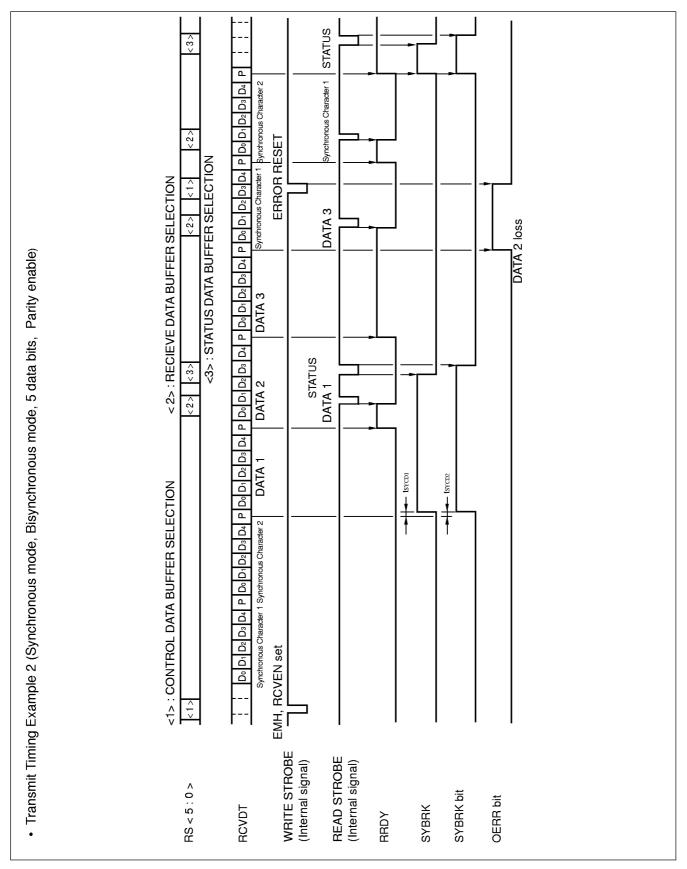
Parameter	Symbol	Va	Unit	
Parameter	Symbol	Min.	Max.	Unit
SYBRK setup time (for RCLK)	t BRKS	0	_	t clk
SYBRK hold time (for RCLK)	t brkh	10		tclk

tclk: See "(2) Clock Signals".

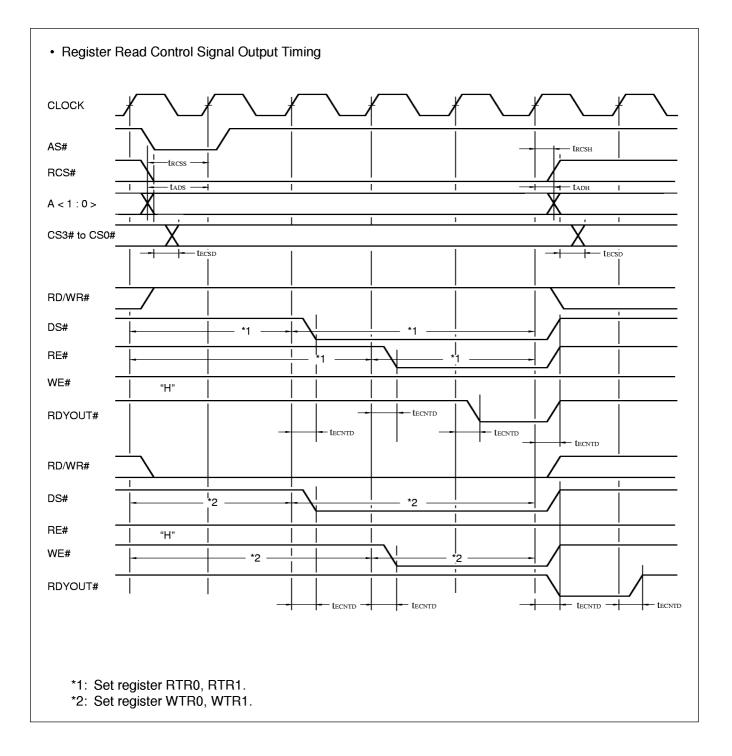

• Transmit and Receive Control Signal Timing

(MB86941: V_{DD} = 5 V \pm 5%, T_A = 0 to +70°C)


(MB86942: VDD	= 3.3 V \pm 0.15 V, T	$T_{A} = 0 \text{ to } + 70^{\circ}\text{C}$
---------------	-------------------------	--


Parameter	Symbol	Va	Unit	
Parameter		Min.	Max.	Unit
Delay time from TCLK# rising (last bit) to TRDY rising	t tckrdy	_	36	t c∟ĸ
Delay time from TCLK# rising (last bit) to TEMP rising	t tckemp	_	24	t clk
Delay time from RCLK rising (last bit) to RRDY rising	t rckrdy		35	t clk
Detection time from RCLK rising (last bit) to internal SYNC (SYBRK pin)	tsycd1	_	62	t olk
Detection time RCLK rising (last bit) to internal SYNC (status data buffer register)	tsycd2		70	t olk

tclk: See "(2) Clock Signals".



(7) RCSTG

Control Signal Output Timing

(MB86941: $V_{DD} = 5 V \pm 5\%$, T_A = 0 to +70°C) (MB86942: $V_{DD} = 3.3 V \pm 0.15 V$, T_A = 0 to +70°C)

		(J00342. VDD	0.0 1 2 0.1	- 1, 10 - 10	
Parameter	Symbol	MB8	6941	MB8	Unit	
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
RCS# setup time	trcss	5		7	—	ns
RCS# hold time	t RCSH	5		2	—	ns
A < 1 : 0 > setup time	t ads	5		7	—	ns
A < 1 : 0 > hold time	t adh	5		2	_	ns
Delay time from RCS#, A1, A0 fix to CS3# to CS0# fix	t ECSD	_	15	_	18	ns
Delay time from CLOCK to RE#, WE#, DS# fix	t ecntd		15		18	ns

- (8) SIO
- Control Signal Output Timing

(MB86941: V _{DD} = 5 V \pm 5%, T _A = 0 to +70°	°C)
(MB86942: $V_{DD} = 3.3 \text{ V} \pm 0.15 \text{ V}$, $T_A = 0$ to $+70^{\circ}$	°C)

Deveneter									
Parameter		Symbol	Min.	Max.	Unit				
SICLK rise time		t sclkr		3	ns				
SICLK fall time		t sclkf		3	ns				
Setup time from SICLK rise/fall to valid SIRXD	at receiving	t srd	80	_	ns				
Delay time from SICLK rise/fall to SITXD output	at	t dtd	_	30	ns				
Hold time from SICLK rise/fall to valid SITXD	t нтD	80		ns					

■ NOTES ON USE

When the prescaler is used in external clock mode, and the prescaler output signal is used as the timer operating clock, use the following settings.

Set the timer operating clock to 'External clock' (TCR bits 10, 9 = "01"), and connect the prescaler output pin PRSCK externally to the timer external clock input pin CLK.

When the prescaler and timer are set to the following modes, the timer output signal OUT will not change at the anticipated time:

Prescaler: External clock mode (PRESCALER REGISTER bit15 = "1"). Timer: Prescaler internal output signal used as operating clock, without using the external input pin (TCR bit 10, 9 = "10").

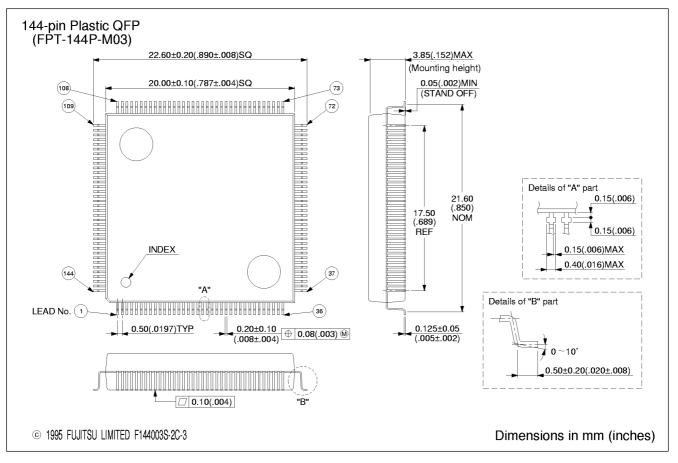
■ REGISTER MAP

	RS5	Register name								b	oit									
Block name	to RS0 (HEX)		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	00н	TM0 (TRIGGER MODE 0)	С⊦	CH15		CH15 CH1		CH14 C		CH13		CH12		CH11		110	СН9		CI	H8
	01н	TM1 (TRIGGER MODE 1)	CI	H7	CI	46	CI	-15	CH4		СНЗ		CI	H2	CH1		_	_		
IRC	02н	RS (REQ SENSE)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	_		
	03н	RC (REQ CLEAR)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	_		
		MASK (MASK)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	ІМ		
	05 н	IRL (IRL Latch/Clear)	_						_		— — — CL IRL LA				ATCH					
Decembed	06 н	Reserved	—	—	_	_	—	_	_	—	—	_	—	_	_	—	—	_		
Reserved	07н	Reserved	—	—			_			—	—	_	—	_		_	—			
	08 H	SDR0 (SDTR Data 0)	_	_	_	_		_	_	_			TRANSMIT DATA/ RECEIVE DATA							
SDTR 0	09 H	SCSR0 (SDTR CM/ST 0)									C	ONT	ROL	DAT	A/STA	ATUS	S DAT	ГА		
	0А н		_					_	_		_					_	_	_		
Reserved	0Вн	Reserved	—	—	_	_	_	—	—	—	—	_	—	_	—	—	—	—		
	0С н	SDR1 (SDTR Dsta 1)													IIT D/ E DA					
SDTR 1 –	0DH	SCSR1 (SDTR CM/ST 1)	_							_)L DA S DA					
Deserver	0Eн	December	—	—	_	_	_	—	_	—	—	_			_	_	_	_		
Reserved	0Fн	Reserved	—	—	_	_	_	—	—	—	—	_	—	_	—	_	—	—		
PRESCALER0	10 н	PRS0 (PRESCALE 0)	EX	TEST				S	SELECT PRESCALE VALUE											

(Continued)

_	RS5		bit															
Block name	to RS0 (HEX)	Register name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	11 н	TCR0 (TIMER CONTROL 0)	от	DT IN - TEST CE CS OCONT IV MODE E								EVENT						
TIMER 0	12 H	RVR0 (RELOAD VALUE 0)		RELOAD VALUE														
	13 ⊦	CVR0 (COUNT VALUE 0)		COUNT VALUE														
PRESCALER1	14 H	PRS1 (PRESCALE 1)	EX	TEST				SI	ELEC	т			PRE	SCAL	E VA	ALUE		
	15 н	TCR1 (TIMER CONTROL 1)	от	IN		TEST	CE	С	S	OCONT		IV	N	/ODE	Ξ	EVENT		IT
TIMER 1	16 н	RVR1 (RELOAD VALUE 1)		RELOAD VALUE														
	17 н	CVR1 (COUNT VALUE 1)		COUNT VALUE														
Reserved	18 н	Reserved							_					_				—
	19 н	TCR2 (TIMER CONTROL 2)	от	IN	_	TEST	CE	С	S	000	ЭМТ	IV	N	NODE	Ξ	E	VEN	IT
TIMER 2	1А н	RVR2 (RELOAD VALUE 2)							RE	LOAE) VAI	UE						
	1 Вн	CVR2 (COUNT VALUE 2)							СС	DUNT	VAL	UE						
Reserved	1С н	Reserved					_											
	1Dн	TCR3 (TIMER CONTROL 3)	то	IN		TEST	CE	С	S	000	ЭNТ	IV	N	NODE	Ξ	E	VEN	IT
TIMER 3	1 Ен	RVR3 (RELOAD VALUE 3)							RE	LOAD) VAI	UE						
	1F⊦	CVR3 (COUNT VALUE 3)		COUNT VALUE														

(Continued)


(Continued)

Diask	RS5	195 Beginter								b	it							
Block name	to RS0 (HEX)	Register name	15	14	13	12	11	10	9	9 8 7		6	5	4	3	2	1	0
I/O PORT	20н	PDR (PORT DATA)							Ρ	ORT	DAT	A						
	21 H	DCR (PORT DIRECTION)							POF	t DI	REC	ΓΙΟΝ						
Reserved	22н 23н	Reserved																
	24н	SCR (SERIAL CONTROL)	_	_		_	_	_	_	_	CONTROL							
SIO	25н	STR (SERIAL STATUS)	_	_	_	_	_	_	_	_	_	_		-		STA	TUS	
	26 н	RDR (RECEIVE DATA)								_		RECEIVE DATA						
	27 н	TDR (TRANSMIT DATA)	_	_		_	_	_	_	_		TRANSMIT DATA						
	28 н	TRR (TRANSFER RATE)								_				_	_		RATE ELE(
	29 н		_		—	—	_	_			—	—	—	—	—		_	—
Reserved	2Ан	Reserved	_		_	—					_	—	—	_	_		_	
	2 Вн		<u> </u>		<u> </u>	—		<u> </u>				—	—	—	<u> </u>		<u> </u>	
	2Cн	RTR0 (READ TIMING 0)	—	_	—	—	—	—	ר	FREV	V	Т	RDS	W	TR	EL	TR	DSL
TIMING0	2Dн	WTR0 (WRITE TIMING 0)							TWEW TWDSW TW		тм	/EL	тw	DSL				
	2Eн	RTR1 (READ TIMING 1)	_			_			7	FREV	v	т	RDS	W	TR	EL	TRDSL	
TIMING1	2Fн	WTR1 (WRITE TIMING 1)							Т	TWEW		יד	WDS	W	тм	/EL	тw	DSL

■ ORDERING INFORMATION

Part number	Package	Remarks
MB86941PFV	144-pin Plastic QFP (FPT-144P-M03)	
MB86942PFV	144-pin Plastic QFP (FPT-144P-M03)	

■ PACKAGE DIMENSION

